Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells.

نویسندگان

  • Tomokazu Doi
  • Shinya Kuroda
  • Takayuki Michikawa
  • Mitsuo Kawato
چکیده

Large Ca2+ signals essential for cerebellar long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses are known to be induced when PF activation precedes climbing fiber (CF) activation by 50-200 ms, consistent with cerebellar learning theories. However, large Ca2+ signals and/or LTD can also be induced by massive PF stimulation alone or by photolysis of caged Ca2+ or inositol 1,4,5-trisphosphate (IP3). To understand the spike-timing detection mechanisms in cerebellar LTD, we developed a kinetic model of Ca2+ dynamics within a Purkinje dendritic spine. In our kinetic simulation, IP3 was first produced via the metabotropic pathway of PF inputs, and the Ca2+ influx in response to the CF input triggered regenerative Ca2+-induced Ca2+ release from the internal stores via the IP3 receptors activated by the increased IP3. The delay in IP3 increase caused by the PF metabotropic pathway generated the optimal PF-CF interval. The Ca2+ dynamics revealed a threshold for large Ca2+ release that decreased as IP3 increased, and it coherently explained the different forms of LTD. At 2.5 microM IP3, CF activation after PF activation was essential to reach the threshold for the regenerative Ca2+ release. At 10 microM IP3, the same as achieved experimentally by strong IP3 photolysis, the threshold was lower, and thus large Ca2+ release was generated even without CF stimulation. In contrast, the basal 0.1 microM IP3 level resulted in an extremely high Ca2+ threshold for regenerative Ca2+ release. Thus, the results demonstrated that Ca2+ dynamics can detect spike timing under physiological conditions, which supports cerebellar learning theories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons.

The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ channel that releases Ca2+ from internal Ca2+ stores in response to InsP3. Although InsP3R is highly expressed in various regions of the mammalian brain, the functional role of this receptor has not been clarified. We show here that cerebellar slices prepared from mice with a disrupted InsP3R type 1 gene, which is predo...

متن کامل

Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium.

To evaluate the relationship of inositol 1,4,5-trisphosphate (IP3) receptor-mediated signal transduction and cellular energy dynamics, we have characterized effects of nucleotides on IP3 receptor (IP3R)-mediated calcium (Ca2+) flux in purified IP3 receptors reconstituted in lipid vesicles (IP3RV) and examined hypoxia-induced augmentation of intracellular Ca2+ in intact cells. Reduced nicotinami...

متن کامل

The properties of intracellular calcium stores in cultured rat cerebellar neurons.

Cerebellar Purkinje neurons contain a remarkable array of cellular components potentially concerned with regulation of the free cytoplasmic Ca2+ concentration, [Ca2+]i. These include high concentrations of Ca(2+)-binding proteins, inositol 1,4,5-triphosphate receptors (IP3R), and ryanodine receptors (RyR). The latter two molecules are thought to be associated with intracellular Ca2+ stores. We ...

متن کامل

Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells.

Modeling and simulation of the calcium signaling events that precede long-term depression of synaptic activity in cerebellar Purkinje cells are performed using the Virtual Cell biological modeling framework. It is found that the unusually high density and low sensitivity of inositol-1,4,5-trisphosphate receptors (IP3R) are critical to the ability of the cell to generate and localize a calcium s...

متن کامل

Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor.

Associative long-term depression (LTD) at cerebellar parallel fiber-Purkinje cell synapses is sensitive to the temporal order in which the parallel fiber is coactivated with the climbing fiber input, but how order sensitivity is achieved is unknown. Here we show that the cerebellar inositol-1,4,5-trisphosphate (IP3) receptor, whose activation is required for LTD induction, is sensitive in situ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2005